
COMP 3711 – Design and Analysis of Algorithms
2017 Fall Semester – Written Assignment # 3

Distributed: March 27, 2017 – Due: April 10, 2017
Revised (Q5 Diagram (C) fixed) April 8, 2017

Your solutions should contain (i) your name, (ii) your student ID #, and (iii)
your email address
Some Notes:

• Please write clearly and briefly.

• Please follow the guidelines on doing your own work and avoiding plagiarism
given on the class home page.
In particular don’t forget to acknowledge individuals who assisted
you, or sources where you found solutions. Failure to do so will be
considered plagiarism.

• This assignment is due by 23:59 on April 10, 2017 in BOTH hard AND
soft copy formats. A hard copy should be deposited in one of the two
COMP3711 assignment collection boxes outside of room 4210. A soft copy
for our records in PDF format should also be submitted via the online CASS
system. See the Assignment 1 page in Canvas for information on how to
submit online.

• The default base for logarithms will be 2, i.e., log n will mean log2 n. If
another base is intended, it will be explicitly stated, e.g., log3 n.

• In the original published version of the assignment, diagram (C)
of Question 5 was missing one edge. That edge, (0, 5)− (1, 5), has
now been added in.

1. Optimal Binary Search Trees (20 points)

Consider the following input to the Optimal Binary Search Tree problem
(it is presented in the same format as the example powerpoint file posted
on the lecture page):

i 1 2 3 4 5 6 7 8
ai A B C D E F G H

f(ai) 5 15 5 5 10 10 20 5

a) Fill in the two tables below. As in the example powerpoint only the
entries with i ≤ j need to be filled in. We have started you off by filling in
the [i, i] entries.

i/j 1 2 3 4 5 6 7 8

1 5
2 15
3 5
4 5
5 10
6 10
7 20
8 5

i/j 1 2 3 4 5 6 7 8

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

Table 1: Left matrix is e[i, j]. Right matrix is root[i, j].

b) Draw the optimal Binary Search Tree (with 8 nodes) and give its cost.

2. Edit Distance (25 points)

In this problem you must describe a dynamic programming algorithm for
the minimum edit distance problem.

Background: The goal of the algorithm is to find a way to transform a
“source” string x[1 . . .m] into a new “target” string y[1 . . . n] using any
sequence of operations, operating on the source string from left to right. The
copy operation copies the first remaining character in the source string to
the target string, and deletes it from the source string. The insert operation
adds one character to the end of the current target string. The delete
operation deletes the first remaining character from the source string.

For example, one way to transform the source string algorithm to the
target string altruistic is to use the following sequence of operations.

Operation Target string Source string
copy a a lgorithm

copy l al gorithm

delete g al orithm

insert t alt orithm

delete o alt rithm

copy r altr ithm

insert u altru ithm

copy i altrui thm

insert s altruis thm

copy t altruist hm

delete h altruist m

insert i altruisti m

delete m altruisti

insert c altruistic

The operations can be visualized as follows, with the bi-directional arrows
signifying a copy, the circles an insert and the crosses a delete.

A L T R U I S T I C

A L R I TG O H MX X X X

Each of the operations has an associated cost, c for copy, i for insert, and
d for delete. The cost of a given sequence of transformation operations is
the sum of the costs of the individual operations in the sequence. For the

example above, the cost of converting algorithm to altruistic using the
given set of operations is 5c + 5i + 4d. If c = 1, i = 2 and d = 3 the cost of
the edit would be 5 + 10 + 12 = 27.

Given two sequences x[1 . . .m] and y[1 . . . n] and a given set of operation
costs c, i, and d, the minimum edit distance from x to y is the cost of the
—em least expensive transformation sequence that converts x to y.

(a) Define a cost array that you will use for the dynamic programming
solution. Give the recurrence equation and describe why this equation
is correct.

(b) Give the pseudocode for an algorithm for calculating the cost array.
Document your pseudocode so that it is clear what each section is
doing.

(c) Analyze the running time of the algorithm in part (b). State your
results using O() notation.

Hint 1: The algorithm is very related to the algorithm for the
longest common subsequence problem taught in class.

Hint 2: Consider the last operation in the transformation from
xi = x[1 . . . i] to yj = y[1j]. How does the cost of the entire
transformation depend on the cost of the last operation?

Comment: The minimum edit distance between two genes is one
measure used in bioinformatics to determine how “close” two
genes are to each other.

3. Adjacency Lists (15 points)

The class notes introduce the adjacency list representation for directed
graphs G = (V,E). That representation maintains an array A[...] indexed
by V , in which A[v] is a linked list. The linked list holds the names of all the
nodes u to which v points, i.e., nodes u for which (v, u) ∈ E. (Technically,
A[v] contains a pointer to the first item in the linked list).

This is the default adjacency list format and can be thought of as an out-
adjacency list representation

An in-adjacency list representation would be one in which A[v] is the list
of nodes that point to v.

The input to this problem is an out-adjacency list representation.
Give pseudocode for an O(|V |+ |E|) algorithm that transforms the
out-adjacency list representation into an in-adjacency list repre-
sentation. Explain why your algorithm is correct and why it runs
in O(|V |+ |E|) time.

It is not necessary to write out all of the pointer details. You may assume
that you have O(1) primitive operations that allow creating a linked list
and adding items to the head of the list.

The diagram below shows a directed graph and its associated out- and in-
adjacency list representations.

A

B

D

C

A

B

C

D

A

D

D C

D

A

B

C

D

A

A

B

C B

Out-List In-List

4. Longest Paths in a DAG (25 points)

The input to this problem is a directed graph G = (V,E) with V =
{v1, v2, . . . , vn} satisfying the following property:

If (vi, vj) ∈ E, i.e., is an edge in the graph, then i < j.

Such a graph contains no cycles and is therefore known as a Directed Acyclic
Graph (DAG). The edges in the graphs have associated lengths `(i, j). The
graph is inputted as a (in) adjacency list that has lengths stored with the
edges.

The length of a path is the sum of the lengths of the edges on that path.
For all j > 1 define V [j] to be the length of the longest path in the graph
from v1 to vj.

Here is an example weighted DAG and its associated V [j] values:

v2

v1

v4

v3

5

9

3

1

1
j 1 2 3 4
V [j] 0 5 6 9

Give an O(|V | + |E|) time algorithm for calculating all of the values V [j].
You may assume that all of the `[i, j] are positive and that at least one
path exists from v1 to every vj.

(a) Write a documented pseudocode description of your algorithm

(b) Explain why your algorithm is correct

(c) Explain why your algorithm runs in O(|V |+ |E|) time

Hint: Use Dynamic Programming

5. Depth and Breadth First Search (15 points)

In this problem you will have to describe the depth and breadth first search
trees calculated for particular graphs. Let graph Gn be the n × n grid
containing the n2 points (i, j), i = 0, . . . , n − 1, j = 0, . . . , n − 1. Figure
(A) illustrates G6. Each point is connected to four neighbors: the one to its
right, the one above it, the one to its left, and the one below it. Note that
some points only have two or three neighbors, e.g., the four corner points
only have 2 neighbors and that the edge points (aside from the corners)
each have three neighbors. The adjacency list representation used is

(i, j) :→ (i + 1, j)→ (i, j + 1)→ (i− 1, j)→ (i, j − 1).

For example, the adjacency list representation for (1, 1) in G6 is

(1, 1) :→ (2, 1)→ (1, 2)→ (0, 1)→ (1, 0).

(0,0) (5,0)

(5,5)(0,5)

(0,0) (5,0)

(5,5)(0,5)

(1,0)
(0,0) (5,0)

(5,5)(0,5)

(1,0)

(A) (B) (C)

Some nodes will only have two or three neighbors; their adjacency lists
should be adjusted appropriately. For example

(0, 0) :→ (1, 0)→ (0, 1) and (i, 0) :→ (i + 1, 0)→ (i, 1)→ (i− 1, 0)

for i = 1, . . . , n− 2.

In what follows Describe the tree means (i) list the edges in the tree and
(ii) sketch a diagram that illustrates how the tree looks.

(a) Describe the tree produced by Depth First Search run on Gn,
for all n ≥ 6, starting at root s = (1, 0). Figure (B) illustrates the
tree produced for G6.

(b) Describe the tree produced by Breadth First Search run on
Gn, for all n ≥ 6, starting at root s = (1, 0). Figure (C) illustrates
the tree produced for G6.

Hint: experiment by drawing the BFS and DFS trees for n = 5, 6, 7. You
should see a pattern.

